Шум и борьбы с ним. Производственный шум и борьба с ним

Важное значение в предупреждении развития шумовой патологии имеют предварительные при поступлении на работу и периодические медицинские осмотры. Таким осмотрам подлежат лица, работающие на производствах, где шум превышает предельно допустимый уровень (ПДУ) в любой октавной полосе. Методы и средства коллективной защиты в зависимости от способа реализации подразделяются на строительно-акустические, архитектурно-планировочные и организационно - технические и включают в себя:

Изменение направленности излучения шума;

Рациональную планировку предприятий и производственных помещений;

Акустическую обработку помещений;

Применение звукоизоляции.

К архитектурно-планировочным решениям также относится создание санитарно-защитных зон вокруг предприятий. По мере увеличения расстояния от источника уровень шума уменьшается. Поэтому создание санитарно-защитной зоны необходимой ширины является наиболее простым способом обеспечения санитарно-гигиенических норм вокруг предприятий. Выбор ширины санитарно-защитной зоны зависит от установленного оборудования.

Средства индивидуальной защиты (СИЗ) применяются в том случае, если другими способами обеспечить допустимый уровень шума на рабочем месте не удается. Принцип действия СИЗ – защитить наиболее чувствительный канал воздействия шума на организм человека – ухо. Применение СИЗ позволяет предупредить расстройство не только органов слуха, но и нервной системы от действия чрезмерного раздражителя. Наиболее эффективны СИЗ, как правило, в области высоких частот.

Эффективная защита работающих от неблагоприятного влияния шума требует осуществления комплекса организационных, технических и медицинских мер на этапах проектирования, строительства и эксплуатации производственных предприятий, машин и оборудования. В целях повышения эффективности борьбы с шумом введены обязательный гигиенический контроль объектов, генерирующих шум, регистрация физических факторов, оказывающих вредное воздействие на окружающую среду и отрицательно влияющих на здоровье людей.

Эффективным путем решения проблемы борьбы с шумом является снижение его уровня в самом источнике за счет изменения технологии и конструкции машин. К мерам этого типа относятся замена шумных процессов бесшумными, ударных - безударными, например замена клепки - пайкой, применение виброизоляции, глушителей, демпфирования, звукоизолирующих кожухов и др. При невозможности снижения шума оборудование, являющееся источником повышенного шума, устанавливают в специальные помещения, а пульт дистанционного управления размещают в малошумном помещении. В некоторых случаях снижение уровня шума достигается применением звукопоглощающих пористых материалов, покрытых перфорированными листами алюминия, пластмасс. Большое значение в борьбе с шумом имеют архитектурно-планировочные и строительные мероприятия. В тех случаях, когда технические способы не обеспечивают достижения требований действующих нормативов, необходимо ограничение длительности воздействия шума и применение противошумов. Противошумы – средства индивидуальной защиты органа слуха и предупреждения различных расстройств организма, вызываемых чрезмерным шумом. Их используют в основном тогда, когда технические средства борьбы с шумом не обеспечивают снижения его до безопасных пределов. Противошумы подразделяют на три типа: вкладыши, наушники и шлемы. Противошумные вкладыши вводят в наружный слуховой проход. Вкладыши бывают многократного и однократного пользования. К вкладышам многократного пользования относятся многочисленные варианты заглушек в виде колпачков различной конструкции – например Беруши. Противошумные наушники представляют собой чаши, по форме близкие к полусфере, из легких металлов или пластмасс, наполненные волокнистыми или пористыми звукопоглотителями, удерживаемые с помощью оголовья. Для удобного и плотного прилегания к околоушной области они снабжаются уплотняющими валиками из синтетических тонких пленок. Противошумные шлемы – самые громоздкие и дорогостоящие из индивидуальных средств противошумной защиты. Они используются при высоких уровнях шумов, часто применяются в комбинации с наушниками или вкладышами. Расположенный по краю шлема уплотняющий валик обеспечивает плотное прилегание его к голове.


Инфра- и ультразвук

Ультразвук - упругие колебания и волны с частотами приблизительно от 1,5- 2 ×104 гц (15-20 кгц) и до 109 гц (1 Ггц)

Инфразвук - колебание звуковой волны > 20 Гц.

Природа возникновения инфразвуковых колебаний такая же как и у слышимого звука. Подчиняется тем же закономерностям. Используется такой же математический аппарат, кроме понятия, связанного с уровнем звука. Человеческое ухо не воспринимает ультразвук, однако некоторые животные, например, летучие мыши могут и слышать, и издавать ультразвук. Частично воспринимают его грызуны, кошки, собаки, киты, дельфины. Ультразвуковые колебания возникают при работе моторов автомобилей, станков и ракетных двигателей

Длительное систематическое воздействие ультразвука, распространяющегося воздушным путем, вызывает изменения нервной систему (страх, тревога, покачивание, т.д.), сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. Наиболее характерным является наличие вегетососудистой дистонии и астенического синдрома. Степень выраженности изменений зависит от интенсивности и длительности воздействия ультразвука и усиливается при наличии в спектре высокочастотного шума, при этом присоединяется выраженное снижение слуха. В случае продолжения контакта с ультразвуком указанные расстройства приобретают более стойкий характер. При действии локального ультразвука возникают явления вегетативного полиневрита рук (реже ног) разной степени выраженности, вплоть до развития пареза кистей и предплечий, вегетативно-сосудистой дисфункции. Характер изменений, возникающих в организме под воздействием ультразвука, зависит от дозы воздействия. Малые дозы - уровень звука 80-90 дБ - дают стимулирующий эффект - микромассаж, ускорение обменных процессов. Большие дозы - уровень звука 120 и более дБ – дают поражающий эффект.

Если по производственным причинам невозможно снизить уровень интенсивности шума и ультразвука до допустимых значений, необходимо использование средств индивидуальной защиты - противошумов, резиновых перчаток с хлопчатобумажной прокладкой и др.

Инфразвуком называют акустические колебания с частотой ниже 20 Гц. Этот частотный диапазон лежит ниже порога слышимости и человеческое ухо не способно воспринимать колебания указанных частот. Производственный инфразвук возникает за счет тех же процессов что и шум слышимых частот. Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения). Максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100-110 дБ. Наиболее эффективным и практически единственным средством борьбы с инфразвуком является снижение его в источнике. При выборе конструкций предпочтение должно отдаваться малогабаритным машинам большой жесткости, так как в конструкциях с плоскими поверхностями большой площади и малой жесткости создаются условия для генерации инфразвука. Борьбу с инфразвуком в источнике возникновения необходимо вести в направлении изменения режима работы технологического оборудования - увеличения его быстроходности (например, увеличение числа рабочих ходов кузнечно-прессовых машин, чтобы основная частота следования силовых импульсов лежала за пределами инфразвукового диапазона). Должны приниматься меры по снижению интенсивности аэродинамических процессов - ограничение скоростей движения транспорта, снижение скоростей истечения жидкостей (авиационные и ракетные двигатели, двигатели внутреннего сгорания, системы сброса пара тепловых электростанций и т.д.). В борьбе с инфразвуком на путях распространения определенный эффект оказывают глушители интерференционного типа, обычно при наличии дискретных составляющих в спектре инфразвука. Выполненное в последнее время теоретическое обоснование течения нелинейных процессов в поглотителях резонансного типа открывает реальные пути конструирования звукопоглощающих панелей, кожухов, эффективных в области низких частот. В качестве индивидуальных средств защиты рекомендуется применение наушников, вкладышей, защищающих ухо от неблагоприятного действия сопутствующего шума.

К мерам профилактики организационного плана следует отнести соблюдение режима труда и отдыха, запрещение сверхурочных работ. При контакте с ультразвуком более 50% рабочего времени рекомендуются перерывы продолжительностью 15 мин через каждые 1,5 часа работы. Значительный эффект дает комплекс физиотерапевтических процедур - массаж, УТ-облучение, водные процедуры, витаминизация и др.


ШУМ И МЕТОДЫ БОРЬБЫ С НИМ

Цель работы : ознакомление с характеристиками шума и особенностями его воздействия на организм человека, с особенностями измерения и нормирования параметров шума, а также с методами борьбы с шумом.

Теоретическая часть

1. Звук и его характеристики

Механические колебания частиц упругой среды в диапазоне частот 16 – 20000 Гц воспринимаются ухом человека и называются звуковыми волнами. Колебания среды с частотами ниже 16 Гц называют инфразвуком, а колебания с частотами выше 20000 Гц – ультразвуком. Длина звуковой волны  связана с частотой f и скоростью звука с зависимостью  = c / f .

Нестационарное состояние среды при распространении звуковой волны характеризуется звуковым давлением, под которым понимают среднеквадратическое значение превышения давления в среде при распространении звуковой волны над давлением в невозмущённой среде, измеряемое в паскалях (Па).

Перенос энергии плоской звуковой волной через единицу поверхности, перпендикулярную к направлению распространения звуковой волны характеризуют интенсивностью звука (плотностью потока звуковой мощности), Вт/м 2 : I = P 2 / (ρ ∙ c ),

где P – звуковое давление, Па; – удельная плотность среды, г/м 3 ;

c – скорость распространения звуковой волны в данной среде, м/с.

Скорость переноса энергии равна скорости распространения звуковой волны.

Органы слуха человека способны воспринимать звуковые колебания в очень широких диапазонах изменения интенсивностей и звуковых давлений. Например, при частоте звука в 1 кГц порогу чувствительности “среднего” человеческого уха (порог слышимости) соответствуют значения P 0 = 2·10 –5 Па; I 0 = 10 –12 Вт/м 2 , а порогу болевого ощущения (превышение которого уже может привести к физическому повреждению органов слуха) соответствуют значения P б = 20 Па и I б = 1 Вт/м 2 . Кроме того, в соответствии с законом Вебера-Фехнера раздражающее человеческое ухо действие звука пропорционально логарифму звукового давления. Поэтому на практике обычно вместо абсолютных значений интенсивности и звукового давления используют их логарифмические уровни, выраженные в децибелах (дБ):

L I = 10lg (I/I 0 ) , L P = 20lg (P/P 0 ) ; (1)

где I 0 = 10 –12 Вт/м 2 и P 0 = 2·10 –5 Па – стандартные пороговые значения интенсивности и звукового давления. Для нормальных атмосферных условий можно считать, что L I = L P = L .

Если звук в данной точке складывается из n составляющих от нескольких источников с уровнями звуковых давлений L i , то результирующий уровень звукового давления определяется по формуле:

где L i – уровень звукового давления i - й составляющей в расчетной точке (дБ).

В случае n одинаковых составляющих звука L i = L суммарный уровень составляет:

L  = L + 10 lg (n ) . (3)

Из формул (2) и (3) следует, что если уровень одного из источников звука превышает уровень другого более чем на 10 дБ, то звуком более слабого источника практически можно пренебречь, так как его вклад в общий уровень будет менее 0,5 дБ. Таким образом, при борьбе с шумом в первую очередь необходимо заглушать наиболее интенсивные источники шума. Кроме того, при наличии большого числа одинаковых источников шума устранение одного или двух из них очень слабо влияет на общее снижение уровня шума.

Характеристикой источника шума являются звуковая мощность и её уровень. Звуковая мощность W , Вт, – это общее количество звуковой энергии, излучаемой источником шума в единицу времени. Если энергия излучается по всем направлениям равномерно и затухание звука в воздухе мало, то при интенсивности I на расстоянии r от источника шума его звуковая мощность может быть определена по формуле

W = 4  r 2 I . По аналогии с логарифмическими уровнями интенсивности и звукового давления введены логарифмические уровни звуковой мощности (дБ) L W = 10 lg (W / W 0 ) , где W 0 = 10 -12 – пороговое значение звуковой мощности, Вт.

Спектр шума показывает распределение энергии шума в диапазоне звуковых частот и характеризуется уровнями звукового давления или интенсивности (для источников звука – уровнем звуковой мощности) в анализируемых частотных полосах, в качестве которых, как правило, используются октавные и третьоктавные частотные полосы, характеризуемые нижней f н и верхней f в граничными частотами и среднегеометрической частотой f сг = (f н ∙ f в ) 1/2 .

Октавная полоса звуковых частот характеризуется отношением её граничных частот, удовлетворяющим условию f в / f н = 2, а для третьоктавной – условию f в / f н = 2 1/3 ≈ 1,26.

Каждая октавная полоса частот включает три третьоктавные полосы, причем среднегеометрическая частота центральной из них совпадает со среднегеометрической частотой октавной полосы. Среднегеометрические частоты f сг октавных полос определяются стандартным двоичным рядом, включающим 9 значений: 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц.

2. Особенности субъективного восприятия зв у ка

Восприятие звука человеческим ухом очень сильно и нелинейно зависит от его частоты. Особенности субъективного восприятия звука наиболее удобно иллюстрируются графически с помощью кривых равной громкости (рис. 1). Каждая из семейства кривых на рис. 1 характеризует уровни звукового давления на различных частотах, соответствующие одинаковой громкости восприятия звука и уровню громкости L N (фон).

Рис. 1. Кривые равной громкости

Уровень громкости L N численно равен уровню звукового давления на частоте 1 кГц. На других частотах для обеспечения такой же громкости звука требуется устанавливать другие уровни звукового давления. Из рис. 1 следует, что вид кривой равной громкости и соответствующая ей характеристика слуховой чувствительности зависят от значения L N .

При расчетах и измерениях частотную характеристику органа слуха принято моделировать частотной характеристикой корректирующего фильтра А . Характеристика А является стандартной и задается системой поправок А i = φ(f сг i ), где f сг i – среднегеометрическая частота i -й октавной полосы.

Для соответствия объективных результатов измерений уровня звукового давления субъективному восприятию громкости звука вводят понятие уровня звука. Уровень звука L A (дБА) – результирующий уровень звукового давления шума, прошедшего математическую или физическую обработку в корректирующем фильтре с характеристикой А . Значение уровня звука приближенно соответствует субъективному восприятию громкости шума независимо от его спектра. Уровень звука вычисляется с учетом поправок А i по формуле (2), в которую вместо L i следует подставить ( L i + А i ). Отрицательные значения А i характеризуют ухудшение слуховой чувствительности по сравнению со слуховой чувствительностью на частоте 1000 Гц.

3. Характеристики шума и его нормирование

По характеру спектра шумы подразделяют на широкополосные (с непрерывным спектром шириной более одной октавы) и тональные , в спектре которых имеются выраженные дискретные тона, измеренные в третьоктавных полосах частот с превышением уровня звукового давления над соседними полосами не менее чем на 10 дБ.

По временным характеристикам шумы делят на постоянные , уровень звука которых в течение 8-часового рабочего дня изменяется не более чем на 5 дБА при измерениях на временной характеристике “медленно” шумомера, и непостоянные , не удовлетворяющие данному условию.

Непостоянные шумы , в свою очередь, делятся на следующие виды:

  • колеблющиеся во времени шумы , уровень звука которых непрерывно изменяется во времени;
  • прерывистые шумы , уровень звука которых ступенчато изменяется (на 5 дБА и более), причём длительность интервалов, в течение которых уровень остается постоянным, составляет не менее 1 с;
  • импульсные шумы , состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБА и дБА( I ), измеренные соответственно на временных характеристиках “медленно” и “импульс” шумомера, отличаются не менее чем на 7 дБА.

Для оценки непостоянных шумов введено понятие эквивалентного уровня звука L Аэ (по энергии воздействия), выражаемого в дБА и определяемого по формуле L Аэ = 10 lg (I АС / I 0 ), где I АС – среднее значение интенсивности непостоянного шума, скорректированного по характеристике А , на интервале времени контроля Т .

Текущие значения уровня звука L А и интенсивности I А связаны соотношением L А (t ) = 10 lg (I А (t ) / I 0 ), I АС / I 0 = (1/Т)(I А (t ) / I 0 ) dt , поэтому

(4)

Значения L Аэ могут вычисляться как автоматически интегрирующими шумомерами, так и вручную по результатам измерений уровней звука через каждые 5 с в течение наиболее шумных 30 мин.

Нормируемыми параметрами шума являются:

  • для постоянного шума – уровни звукового давления L P (дБ) в октавных полосах частот со среднегеометрическими частотами 31.5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц; кроме того, для ориентировочной оценки постоянного широкополосного шума на рабочих местах допускается использовать уровень звука L A , выраженный в дБА;
  • для непостоянного шума (кроме импульсного) – эквивалентный уровень звука L Аэ (по энергии воздействия), выраженный в дБА, представляет собой уровень звука такого постоянного широкополосного шума, который воздействует на ухо с такой же звуковой энергией, как и реальный, меняющийся во времени шум за тот же период времени;
  • для импульсного шума – эквивалентный уровень звука L Аэ , выраженный в дБА, и максимальный уровень звука L А max в дБА(I ), измеренный на временной характеристике “импульс” шумомера.

Допустимые значения параметров шума регламентируются СН 2.2.4 / 2.1.8.562-96 « Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки ». Допустимые значения параметров шума на рабочих местах устанавливаются в зависимости от вида выполняемой работы и характера шума. Для работ, связанных с творческой, научной деятельностью, обучением, программированием, предусмотрены наиболее низкие уровни шума.

Ниже приведены характерные виды работ, различаемые при нормировании, с указанием порядкового номера:

1) творческая, научная работа, обучение, проектирование, конструирование, разработка, программирование;

2) административно-управленческая работа, требующая сосредоточенности работа, измерительная и аналитическая работа в лаборатории;

3) диспетчерская работа, требующая речевой связи по телефону, в залах обработки информации на ЭВМ, на участках точной сборки, в машинописных бюро;

4) работа в помещениях для размещения шумных агрегатов ЭВМ, связанная с процессами наблюдения и дистанционного управления без речевой связи по телефону, в лабораториях с шумным оборудованием;

5) все виды работ за исключением перечисленных в пп. 1 – 4.

Для широкополосного шума на рабочих местах в табл. 1 приведены допустимые уровни звукового давления L P в октавных полосах частот со среднегеометрическими частотами f сг , уровни звука L A (для субъективной оценки громкости постоянных шумов) и эквивалентные уровни звука L Аэ (для оценки непостоянных шумов).

Таблица 1

Допустимые уровни шума

вида работы

Уровни звукового давления L P (дБ) в октавных полосах частот со среднегеометрическими частотами, Гц

Уровни звука L А , дБА

31,5

1000

2000

4000

8000

Д ля тонального и импульсного шумов , а также для шумов, создаваемых в помещениях установками кондиционирования и вентиляции, допустимые уровни должны быть на 5 дБ ниже указанных в табл.1 (при измерениях на характеристике “медленно” шумомера).

Для колеблющегося во времени и прерывистого шумов максимальный уровень звука не должен превышать 110 дБА.

Для импульсного шума максимальный уровень звука, измеренный на характеристике “импульс” шумомера, не должен превышать 125 дБА ( I ).

В любом случае запрещается даже кратковременное пребывание людей в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе частот. Зоны с уровнем звука свыше 85 дБА должны быть обозначены знаками безопасности; работающих в таких зонах следует снабжать средствами индивидуальной защиты.

4. Методы и средства борьбы с шумом

Для уменьшения шума применяют следующие основные методы: устранение причин или ослабление шума в источнике возникновения, изменение направленности излучения и экранирование шума, снижение шума на пути его распространения, акустическая обработка помещений, архитектурно-планировочные и строительно-акустические методы.

Для защиты людей от воздействия шума используют средства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ). Предотвращение неблагоприятного воздействия шума обеспечивается также лечебно-профилактическими и организационными мероприятиями, включающими, например, медосмотры, правильный выбор режимов труда и отдыха, сокращение времени пребывания в условиях промышленного шума.

Снижение шума непосредственно в источнике осуществляется на основе выявления конкретных причин шумов и анализа их характера. Шум технологического оборудования чаще имеет механическое и аэродинамическое происхождение. Для снижения механического шума предусматривают тщательное уравновешивание движущихся деталей агрегатов, заменяют подшипники качения подшипниками скольжения, обеспечивают высокую точность изготовления узлов машин и их сборки, заключают в масляные ванны вибрирующие детали, заменяют металлические детали пластмассовыми. Для уменьшения уровней аэродинамического шума в источнике необходимо в первую очередь снижать скорость обтекания деталей воздушными и газовыми потоками и струями, а также вихреобразование путем использования обтекаемых элементов.

Большинство источников шума излучают звуковую энергию в пространстве неравномерно. Установки с направленным излучением следует ориентировать так, чтобы максимум излучаемого шума был направлен в сторону, противоположную рабочему месту или жилому дому.

Экранирование шума заключается в создании звуковой тени за экраном, располагающимся между защищаемой зоной и источником шума. Экраны наиболее эффективны для снижения шума высоких и средних частот и плохо снижают низкочастотный шум, который за счет эффекта дифракции легко огибает экраны.

В качестве экранов, защищающих рабочие места от шума обслуживаемых агрегатов, используют сплошные металлические или железобетонные щиты, облицованные со стороны источника шума звукопоглощающим материалом. Линейные размеры экрана должны превосходить линейные размеры источников шума не менее чем в 2 – 3 раза. Акустические экраны, как правило, применяются в сочетании со звукопоглощающей облицовкой помещения, так как экран снижает только прямой звук, а не отраженный.

Способ звукоизоляции с помощью ограждений заключается в том, что большая часть падающей на него звуковой энергии отражае т ся и лишь незначительная её часть проникает через ограждение. В сл у чае массивного звукоизолирующего плоского ограждения бесконе ч ных размеров толщиной, много меньшей длины продольной волны, осла б ление уровня звукового давления на данной частоте подчиняется так называемому закону массы и находится по форм у ле:

L P осл = 20 lg (mf ) – 47,5 , (5)

где f – частота звука, Гц; m – поверхностная плотность, т.е. масса одного квадратного метра ограждения, кг/м 2 . Из формулы (5) следует, что при удвоении частоты или массы звукоизоляция возрастает на 6 дБ. В случае реальных ограждений конечных размеров закон массы справедлив лишь в определённом диапазоне частот, обычно от десятков Гц до нескольких кГц.

Требуемое для данной октавной полосы частот (с соответствующей среднегеометрической частотой f сг ) ослабление уровня звукового давления определяется разностью:

L P треб (f сг ) = L P изм (f сг ) – L P норм (f сг ) , (6)

где L P изм (f сг ) – уровень звукового давления, измеренный в соответствующей октавной полосе частот; L P норм (f сг ) – нормативный уровень звукового давления.

В качестве звукоизолирующих материалов используют листы из оцинкованной стали, алюминия и его сплавов, древесноволокнистые плиты, фанеру и др. Наиболее эффективными являются панели, состоящие из чередующихся слоёв звукоизолирующих и звукопоглощающих материалов.

В качестве звукоизолирующих преград используются также стены, перегородки, окна, двери, перекрытия из различных строительных материалов. Например, дверь обеспечивает звукоизоляцию 20 дБ, окно – 30 дБ, межкомнатная перегородка – 40 дБ, межквартирная перегородка – 50 дБ.

Для защиты персонала от шума устраивают звукоизолированные кабины наблюдения и дистанционного управления, а наиболее шумные агрегаты закрывают звукоизолирующими кожухами. Кожухи выполняют обычно из стали, их внутренние поверхности облицовывают звукопоглощающим материалом для поглощения энергии шума внутри кожуха. Уменьшить шум в помещении можно также путём снижения уровней отраженного звука с использованием метода звукопоглощения. В этом случае обычно применяют звукопоглощающие облицовки и при необходимости штучные (объёмные) поглотители, подвешенные к потолку.

К звукопоглощающим относятся материалы, у которых коэффициент звукопоглощения (отношение интенсивностей поглощенного и падающего звуков) на средних частотах превышает 0.2. Процесс поглощения звука происходит за счёт перехода механической энергии колеблющихся частиц воздуха в тепловую энергию молекул звукопоглощающего материала, поэтому в качестве звукопоглощающих материалов используют ультратонкое стекловолокно, капроновое волокно, минеральную вату, пористые жесткие плиты.

Наибольшая эффективность достигается при облицовке не менее 60 % общей площади стен и потолка помещения. При этом можно обеспечить снижение шума на 6 – 8 дБ в зоне отраженного звука (вдали от источника) и на 2 – 3 дБ вблизи источника шума.

При строительстве крупных объектов используются архитектурно-планировочные и строительно-акустические методы борьбы с шумом

Если средства коллективной защиты от шума не обеспечивают требуемой защиты или их применение невозможно или нецелесообразно, то применяют средства индивидуальной защиты (СИЗ). К ним относятся противошумные вкладыши, наушники, а также шлемы и костюмы (используемые при уровнях звука выше 120 дБА). Каждое СИЗ характеризуется частотной характеристикой ослабления уровней звукового давления. Наиболее эффективно ослабляются высокие частоты звукового диапазона. Применение СИЗ следует рассматривать как крайнюю меру защиты от шума.

Экспериментальная часть

1. Стенд для измерения характеристик шума

Стенд для измерения характеристик шума состоит из электронного имитатора источника шума и шумомера. В шумомере звуковые колебания преобразуются в электрические.

Упрощённая схема аналогового шумомера приведена на рис.2.

Рис. 2. Структурная схема шумомера

Шумомер состоит из измерительного микрофона M , переключателя D 1 (“Диапазон 1”), усилителя У , формирователя F 1 частотных характеристик с переключателем S 1 их вида (A , LIN , EXT ), второго переключателя D 2 (“Диапазон 2”), квадратичного детектора КД , формирователя временных характеристик F 2 с переключателем S 2 их вида (S – “медленно”, F – “быстро”, I – “импульс”) и индикатора И , градуированного в децибелах. Переключатели S 1 и S 2 объединены и образуют общий переключатель режимов DR (“Режим”). В положении EXT переключателя DR подключается октавный полосовой фильтр со значением частоты f сг , выбираемым переключателем DF .

В режиме S (“медленно”) осуществляется усреднение показаний шумомера. В режиме F (“быстро”) отслеживаются достаточно быстрые изменения шума, что необходимо для оценки его характера. Режим I (“импульс”) позволяет оценить максимальное среднеквадратическое значение шума. Результаты, полученные при измерениях в режимах S , F , I (уровни L S , L F , L I ), могут отличаться друг от друга в зависимости от характера измеряемого шума.

При измерении шума на рабочих местах производственных помещений микрофон располагают на высоте 1,5 м над уровнем пола или на уровне головы человека, если работа выполняется сидя, при этом микрофон должен быть направлен в сторону источника шума и удален не менее чем на 1 м от шумомера и человека, проводящего измерения. Шум следует измерять, когда работает не менее 2/3 установленных в данном помещении единиц технологического оборудования при наиболее вероятных режимах его работы.

Измерение результирующего уровня звукового давления (дБ) проводится при линейной частотной характеристике шумомера – переключатель DR (“Режим”) в положении “ LIN ”. Измерение уровней звука (дБА) осуществляется при включении корректирующего фильтра со стандартной частотной характеристикой A (переключатель DR в положении “ А ”).

Для исследования спектра шума переключатель DR устанавливается в положение “ EXT ” режима S (“медленно”). В этом случае частотная характеристика определяется подключенным октавным полосовым фильтром.

При измерениях в режиме S (“медленно”) отсчет производится по среднему положению стрелки прибора при её колебаниях. Для импульсных шумов следует дополнительно измерить уровень звука на временной характеристике I (“импульс”) с отсчетом в дБА( I ) максимального показания стрелки прибора.

Порядок работы с шумомером и выполнения работы приведены в материалах лабораторного стенда.

Отчёт должен содержать результаты измерений, результаты требуемых вычислений и графические зависимости, иллюстрирующие результаты вычислений.

1. По результатам измерения классифицировать исследуемые шумы (определить их характер).

2. Результаты измерений спектра исследуемого шума по п. 5 порядка выполнения работы L P изм (f сг ) и соответствующие варианту задания нормативные уровни (табл. 1) в октавных полосах частот L P норм (f сг ) занести в табл. 2. Для всех значений f сг занести в табл. 2 результаты вычислений по формуле (6) требуемых ослаблений уровней звукового давления L P треб .

Таблица 2

Результаты измерений и расчёта

f сг , Гц

31.5

1000

2000

4000

8000

L P изм , дБ

L P норм , дБ

L P треб , дБ

m , кг/м 2

L P осл , дБ

L P зв.из , дБ

3. На основе найденных значений L P трЕБ (f сг ) и формулы (5) вычислить и занести в табл. 2 поверхностную плотность m материала звукоизолирующего ограждения, обеспечивавшую ослабление октавных уровней звукового давления исследуемого шума до уровней, не превышающих нормативных:

m = f СГ ·10 0,05 L P треб + 2,375 , кг/м 2 .

4. Для максимального найденного значения параметра m вычислить по формуле (5) и занести в табл. 2 уровни ослабления звукового давления в каждой октавной полосе частот L P осл (f сг ) , обеспечиваемые звукоизолирующим ограждением с данным значением параметра m .

5. Для каждого значения f сг определить уровни звукового давления шума после применения звукоизолирующего ограждения:

L P зв.из = L P изм - L P осл .

6. В плоскости одного чертежа графически построить частотные зависимости L P изм (f сг ) , L P норм (f сг ) , L P треб (f сг ) и L P зв.из (f сг ) . При этом для оси частот выбрать двоичный логарифмический масштаб в соответствии с частотным рядом значений f сг . Убедиться, что уровни спектра шума после звукоизоляции L P зв.из (f сг ) во всех октавных полосах не превосходят уровней нормативного спектра L P норм (f сг ).

Контрольные вопросы

  1. Звук и его характеристики.
  2. Особенности субъективного восприятия звука человеком.
  3. Характеристики шумов и их классификация.
  4. Принципы нормирования шума.
  5. Способы и средства борьбы с шумом и их сравнительная оценка.
  6. Методика измерений параметров шума и режимы шумомера.
  7. Какие параметры шума измеряются с помощью шумомера в режимах “А”, “ LIN ” и “ EXT ”? Каковы различия между этими параметрами?

Библиографический список

  1. Борьба с шумом на производстве: Справочник /Под общ. ред. Е. Я. Юдина . М.: Машиностроение, 1985.
  2. Безопасность жизнедеятельности: Учебник для вузов /Под ред. С. В. Бело в а . М.: Высшая школа, 2004.
  3. Безопасность жизнедеятельности. Безопасность технологических процессов и производств: Учеб. пособие для вузов /П.П. Кукин и др. М.: Высшая школа, 2001.
  4. СН 2.2.4 / 2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Нормирование шумов в производственных помещениях осуществляется в дБ в соответствии с ГОСТ 12.1.003-89 «Шум». Общие требования безопасности". Шум в жилых помещениях также нормируется ГОСТ 12.1.036-81 «ССБТ Шум». Допустимые уровни в жилых и общественных зданиях на уровне 40 дБ днем и 30 дБ в ночное время. Максимальный допустимый уровень шума в жилой зоне в дневное время 55дБ.

Запрещается даже кратковременное пребывание в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе. Зоны с уровнем звука более 85 дБ А должны быть отмечены соответствующими знаками опасности, а работающие в этих зонах обеспечены средствами индивидуальной защиты.

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются:

  • 1. устранение причины шума или существенное его ослабление в самом источнике при разработке технологических процессов и проектировании оборудования;
  • 2. изоляция источника шума от окружающей среды средствами звуко- и виброзащиты, звуко- и вибропоглощения;
  • 3. уменьшение плотности звуковой энергии помещений, отраженной от стен и перекрытий;
  • 4. рациональная планировка помещений;
  • 5. применение средств индивидуальной защиты от шума;
  • 6. рационализация режима труда в условиях шума;
  • 7. профилактические мероприятия медицинского характера.

Наиболее эффективный путь борьбы с шумом, причиной которого является вибрация, возникающая от ударов, сил трения, механических усилий и т.д., - улучшение конструкции оборудования (изменение технологии с целью устранения удара). Снижение шума и вибрации достигается заменой возвратно-поступательного движения в узлах работающих механизмов равномерным вращательным. При высоких тонах шумов эффективно демпфирование, при котором вибрирующая поверхность покрывается материалом с большим внутренним трением (резина, пробка, битум, войлок и др.). К демпфирующим материалам при этом предъявляются следующие требования: высокая эффективность, малая масса, способность прочно удерживаться на металле и предохранять его от коррозии.

При невозможности достаточно эффективного снижения шума за счет создания совершенной конструкции той или иной машины следует осуществлять его локализацию у места возникновения путем применения звукопоглощающих и звукоизолирующих конструкций и материалов. Воздушные шумы ослабляются установкой на машинах специальных кожухов или размещением генерирующего шум оборудования в помещениях с массивными стенами без щелей и отверстий. Для исключения резонансных явлений кожухи следует облицовывать материалами с большим внутренним трением.

Для снижения структурных шумов, распространяемых в твердых средах, применяются звуко- и виброизоляционные перекрытия. Ослабление шума достигается применением под полом упругих прокладок без жесткой их связи с несущими конструкциями зданий, установкой вибрирующего оборудования на амортизаторы или специальные изолированные фундаменты. Широко применяются противошумные мастики на битумной основе, наносимые на поверхность металла. Наряду со звукоизоляцией в производственных условиях широко применяются средства звукопоглощения. Для помещений малого объема (400-500 м3) рекомендуется общая облицовка стен и перекрытий, снижающая уровень шума на 7-8 дБ. Наиболее высокими коэффициентами звукопоглощения в широком спектре частот обладают штукатурки и плиты, минеральная вата, древесноволокнистые плиты, камышитовые маты, войлок и пр. Эффективность звукопоглощения, увеличивается при многослойном размещении поглощающих материалов с воздушными прослойками между слоями также перфорацией покрытий. В помещениях большого объема эффективны звукопоглощающие барьеры и объемные поглотители, подвешиваемые над шумными агрегатами, которые увеличивают звукопоглощение почти в 2 раза по сравнению с покрытием звукопоглощающими материалами потолков и стен. Поглощение аэродинамических шумов осуществляется с помощью активных и реактивных глушителей.

Уменьшения шума можно достичь за счет рациональной планировки зданий, в соответствии с которой наиболее шумные помещения должны быть сконцентрированы в глубине территории в одном месте. Они должны быть удалены от помещений для умственного труда и ограждены зоной зеленых насаждений, частично поглощающих шум. Агрегаты с наиболее интенсивным шумом (выше 130 дБ) следует размещать вне территории предприятий и жилой зоны отделять от границ населенных пунктов шумозащитной зоной или стеной. Агрегаты, создающие шум более 90 дБ, должны размешаться в изолированных помещениях. Если шумные агрегаты нельзя звукоизолировать, то для защиты персонала от прямого шумоизлучения должны применяться акустические экраны, облицованные звукопоглощающими материалами, а также звукоизолированные кабины наблюдения и дистанционного управления. Так как инфразвук свободно проникает через строительные конструкции, то эффективная борьба с ним возможна только подавлением в источнике за счет изменения режимов работы оборудования, изменения жесткости конструкции, увеличения быстроходности агрегатов. Ультразвуковые колебания быстро затухают в воздухе, поэтому для уменьшения вредного воздействия ультразвука необходимо исключить непосредственный контакт человека с источником, а для подавления звуковых волн применять защитные кожухи.

Помимо мер технологического и технического характера, широко применяются средства индивидуальной защиты - антифоны, выполненные в виде наушников или вкладышей. Существует несколько десятков вариантов заглушек-вкладышей, наушников и шлемов, рассчитанных на изоляцию слухового прохода от шумов различного спектрального состава. Наиболее удобными и эффективными считаются вкладыши из смеси волокон органической бактерицидной ваты и ультратонких полимерных волокон из материала ФП («беруши»), позволяющие снизить уровень громкости шума на различных частотах от 15 до 31 дБ. Отрицательное действие шумов можно снизить за счет сокращения времени их воздействия, построения рационального режима труда и отдыха, предусматривающего кратковременные перерывы в течение рабочего дня для восстановления функции слуха в тихих помещениях. Для снижения уровня шума в жилых помещениях необходимы соответствующие градостроительные решения (вывод из жилых зон, заглубление или подъем на эстакады транспортных потоков, ориентация жилых помещений домов в направлении минимального уровня шума, использование малоэтажной застройки или зеленых насаждений в качестве акустических экранов и т.п.), административные (запрет движения тяжелого транспорта в ночное время в жилых районах), конструктивные (снижение уровня шума разрабатываемых транспортных средств, применение вместо обычного остекления зданий в шумных районах стеклопакетов и т.п.), организационные (поддержание на качественном уровне дорожных покрытий, рельсового и коммунального хозяйства) и т.п.

Шум стал одним из основных загрязнителей окружающей среды. Сильный неожиданный звук и даже небольшой шум, например звуки радио и тем более транспорта, могут привести к эмоциональному и поведенческому стрессу, нарушить покой человека, вызвать быструю утомляемость, звон в ушах, головокружение, усиленное сердцебиение, головную боль, повысить кровяное давление.[ ...]

Примерно 10 млн населения России подвержено постоянному шумовому воздействию с высоким уровнем интенсивности.[ ...]

Отсутствие шума - показатель высокой культуры труда и один из факторов повышения его производительности.[ ...]

За рубежом тишина рассматривается как товар, имеющий стоимость. Квартиры в тихих районах значительно дороже. Транспортная магистраль с интенсивностью движения 1000-2000 машин в час рассматривается градостроителями как транспортная канализация.[ ...]

Рабочие шумных цехов и предприятий наиболее раздражительны и невнимательны в процессе производства. Это отражается и на взаимоотношениях в семье. Имеются сведения о том, что шум снижает остроту зрения. По данным французских ученых, 11 %всех несчастных случаев связаны с потерей слуха. Причиной ухудшения его оказываются не только плохие условия труда, но и жизнь в современных городах. Учеными установлено, что человек в крупном городе начинает глохнуть к 25 годам, в то время как потеря слуха у жителей джунглей Африки наблюдается лишь к 70 годам.[ ...]

Самый распространенный и мощный источник городского шума - транспорт, который составляет 60-80 % всех шумов, воздействующих на человека. Звук от проходящего транспорта, многократно отражаясь от стен зданий, создает большой уровень шума - 80-82 дБ. Исследовайия показывают, что транспортные потоки районных магистралей больших городов составляют 500-1000 машин в час, городских - 1000-2000, а в часы пик достигают 4000 машин в час. Пропускная способность магистралей многих городов не соответствует интенсивности транспортного потока.[ ...]

Неблагоприятное воздействие на население городов и пригородных территорий оказывает шум от авиационного транспорта, особенно с появлением новых, мощных воздушных лайнеров, увеличения интенсивности и расширения географии воздушных перевозок.[ ...]

Неожиданный сильный шум может привести к параличу сердца. Под воздействием шума развиваются сердечно-сосудистые заболевания. Язвенная болезнь, гастрит, нарушения обмена веществ чаще встречаются у людей, живущих и работающих в аномальной шумовой обстановке.[ ...]

Самолет, особенно реактивный, пролетающий на небольшой высоте, отрицательно воздействует на человека, распугивает животных, от его шума даже лопаются яйца в гнездах птиц. От колебаний воздуха частотой более 600 Гц, издаваемого транзистором, шмели, жуки, пчелы и другие насекомые с большим напряжением поднимаются в воздух или совершенно не способны сделать это.[ ...]

Особенно опасен для человека шум интенсивностью 130- 140 дБ от взлетающих реактивных самолетов. Вот почему нежелательно располагать рядом с аэропортами гостиницы, производственные помещения, жилые дома. Сами аэропорты следует размещать также на значительном удалении от городов и других населенных пунктов.

mob_info